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While the aim of “Quantifying Uncertainty in 
Analytical Measurement” is to provide a 
standardized framework and methodology for 
estimating and expressing uncertainty in 
quantitative analytical measurements, the 
Eurachem/CITAC guide for qualitative analysis 
expands the concept of uncertainty to 
categorical decisions, allowing qualitative 
analyses to be evaluated with the same 
metrological and statistical rigor.

Published in 2021, the Eurachem/CITAC 
Guide on Assessment of Performance and 
Uncertainty in Qualitative Chemical Analysis is 
considered as a key methodological reference 
for assessing the reliability of qualitative 

outcomes. Such qualitative tests yield categorical results, such as the presence or absence of a substance 
or the identification of a compound. Although such results do not yield a directly measured numerical value, 
they are not exempt from uncertainty. The guide proposes quantifying these uncertainties associated with 
the probability of false-positive or false-negative results to inform users of the analysis about the method’s 
reliability limits.1 

In this context, the document provides different methodological approaches that enable qualitative 
decisions to be treated with the same statistical rigor as quantitative analyses. It presents practical examples 
illustrating how these approaches can be implemented, recognizing that the outcome of a qualitative method, 
such as the identification of a compound or the confirmation of a substance’s presence, is subject to errors 
and uncertainties that must be systematically evaluated and communicated.2 

Defining the types of criteria used in qualitative analysis involves distinguishing between quantitative 
criteria, which entail converting a numerical value into a category (e.g., compliant or non-compliant based 
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on a threshold), and qualitative criteria, such as color change, visual observation, or other indications of 
presence or absence. Although the guide primarily focuses on binary nominal classification (e.g., yes or 
no, present or absent), it acknowledges that, in certain categorical cases, classification can be reduced to 
correct or incorrect to apply the same principles. By explicitly defining the decision criteria and the statistical 
or probabilistic thresholds that delineate the boundary between categories, the guide ensures metrological 
traceability and transparency in the interpretation of results.

As a central tool for characterizing the performance of qualitative methods, the guide introduces metrics 
based on false results. Laboratories are advised to collect samples with known or reference results, apply 
the method under evaluation to these cases, and estimate the frequency with which the process fails to 
correctly classify an item. 

From these results, the proportions of true positives, true negatives, false positives, and false negatives 
are calculated. These proportions allow the estimation of error probabilities and the construction of confidence 
intervals, thereby expressing statistical uncertainty. Treated as direct measures of uncertainty, these error 
rates provide qualitative analyses with a quantitative dimension of reliability, which is important when 
analytical results affect technical, regulatory, or scientific decisions.3,4 

A crucial aspect mentioned by the guide is the representativeness and diversity of the cases used in 
performance estimation. If the test cases are too homogeneous or not representative of real conditions, the 
estimated error rates may underestimate or overestimate the actual uncertainty. Therefore, it is recommended 
to use test samples that cover the expected range of conditions, including different matrices, varying levels 
of interferents, and operational variations, to ensure the reliability estimate is robust.

This recommendation becomes especially relevant in methodologies based on spectroscopy and 
measurement instruments, where spectral variability and signal overlap among similar constituents pose 
practical challenges. By requiring sample sets that are representative of real analysis conditions, the guide 
promotes validation that reflects the natural variability of matrices and the presence of interferents, an 
essential element to realistically estimating the probability of incorrect classifications.5-7

In addition to representativeness, the number of samples used for performance estimation plays a critical 
role in the reliability and stability of validation results. Although no universally fixed minimum sample size can 
be defined since this number depends on the analytical objective, system complexity, and data variability, 
previous validation studies conducted under simple or simulated scenarios have shown that insufficient 
sample numbers can lead to unstable or overly optimistic estimates of error rates, particularly in qualitative 
and classification problems. As a general indication, validation studies require sample sizes on the order of 
several tens per class to achieve stable and convergent performance estimates, with larger sample sizes 
becoming necessary as model complexity increases.8

Therefore, representativeness and sample size should be considered jointly to ensure that estimated 
probabilities of incorrect classification realistically reflect the uncertainty associated with real analytical 
conditions. 

When it comes to selectivity, the guide allows for a reinterpretation of this traditional concept. Instead 
of remaining a purely qualitative attribute, selectivity is viewed as a measurable parameter linked to the 
probability of correctly distinguishing between samples containing similar compounds or interferents. Thus, 
evaluating selectivity becomes an exercise in pattern recognition and probabilistic classification, where 
performance is expressed by the method’s ability to assign each sample to its category correctly. This 
perspective broadens the understanding of selectivity, associating it with the statistical reliability of the 
response rather than solely the absence of visual or instrumental interference.9-13 

The practical application of this methodology is especially relevant in non-targeted analyses, where the 
goal is to detect complex patterns and identify substances across diverse matrices without predefined targets. 
In such cases, the method must correctly differentiate signals corresponding to distinct compounds, even 
in the presence of instrumental noise and spectral overlap. Recent studies illustrate this by developing an 
automated approach for identifying microplastics using Raman spectroscopy, addressing the challenges of 
spectral variability and signal overlap among similar polymers. Instead of relying on an arbitrary similarity 
value, the method used a correlation distribution obtained via bootstrap sampling to determine the practical 
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acceptance threshold, aligning with the guide’s recommendation to base qualitative decisions on probabilistic 
metrics and explicit performance assessments. This statistically controlled approach has been shown to 
significantly reduce classification errors, providing known confidence levels for each decision and bringing 
the analytical process closer to a metrologically traceable system where each decision is supported by 
uncertainty and performance estimates.14 

When Raman spectroscopy is applied to quantify species in reactive mixtures, as in studies of urea 
and thiourea, adherence to the principles outlined in the guide is essential. Although the primary objective 
of such studies is to estimate concentrations from Raman signals quantitatively, a qualitative component 
remains inherent in spectral assignment, band identification, and the differentiation of interfering signals, 
steps that carry a risk of interpretative error. The guide emphasizes that any implicit qualitative decision, 
for instance, assigning a peak to a specific vibrational mode or determining whether a signal belongs to 
the analyte or to noise, is subject to uncertainty, and this uncertainty should be expressed in terms of error 
probabilities. In the urea/thiourea system, this involves evaluating the likelihood of misinterpretations—such 
as mistaking an interfering band for the analyte or overlooking weak peaks buried in noise—and designing 
validation experiments that account for varying compound ratios, noise levels, and instrumental conditions.15 

Moreover, the guide recommends that qualitative conclusions, such as band assignments or confirmation 
of analyte presence, be accompanied by a confidence statement or an estimate of the local error probability 
derived from previously assessed spectral error rates, thereby enhancing transparency and discouraging 
absolute interpretations of spectroscopic signals. The systematic implementation of these guidelines 
also fosters a culture of continuous performance monitoring in laboratories. By acknowledging that even 
seemingly unambiguous spectral assignments may fail, researchers are encouraged to establish controls, 
retest protocols, and periodically review the criteria used to discriminate signals.16,17 

Beyond individual method performance, interlaboratory comparability of qualitative decisions is equally 
critical to ensure reproducibility across different analytical contexts. In this regard, the joint IUPAC/CITAC 
(2025) guide enhances metrological capacity by proposing a statistical framework specifically designed for 
analyzing agreement in categorical results obtained across laboratories, operators, or instruments. Tools such 
as CATANOVA (Categorical Analysis of Variance) and ORDANOVA (Ordinal Analysis of Variance) enable 
the treatment of nominal and ordinal variables, respectively, quantifying the degree of agreement among 
classifications and identifying sources of systematic variability between laboratories. This statistical evaluation 
is crucial for validating automated decision systems in qualitative methods. Consequently, it ensures that 
a method not only performs reliably within a single laboratory but also yields equivalent, traceable results 
across diverse analytical environments—an indispensable requirement for the international recognition of 
qualitative measurements.18 

Furthermore, the consolidation of metrological approaches to qualitative methods has expanded across 
various domains, reflecting the need to transform descriptive judgments into traceable, comparable decisions. 
In environmental monitoring systems, the use of portable devices, assay kits, and continuous sensors 
highlights the importance of incorporating performance and uncertainty considerations into the interpretation 
of detection or non-detection results.19 

In toxicological, forensic, and genetic sequencing contexts, harmonised procedures and the application of 
statistical metrics enable quantification of interlaboratory variability and reduction of classification errors.20,21 
In the assessment of pharmaceutical equivalence and clinical diagnostic testing, risk models and sensitivity 
and specificity metrics reinforce the need to track the reliability of qualitative decisions.22,23 

Finally, studies involving bottom-up uncertainty estimation in complex matrices and interlaboratory 
comparisons demonstrate that selectivity and agreement among categorical results can be addressed 
with statistical rigor, thereby consolidating qualitative metrology as a structured discipline applicable across 
multiple analytical fields.24-26 

The relevance of these principles and tools transcends specific domains, extending well beyond laboratory 
contexts. In sectors such as food and beverages, authentication and origin traceability depend strongly on 
spectroscopic and multivariate methods, in which trace elements and spectral profiles are used as markers 
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to distinguish regions or products. Despite the high performance of supervised classification models, the 
natural variability of elements and the overlap of compositional features can lead to false positives or 
negatives, which are precisely the central metrics discussed in the Eurachem and IUPAC/CITAC guides.

The explicit incorporation of performance and uncertainty measures could therefore enhance the validation 
of these methods, making results more comparable across laboratories and legally more defensible in cases 
of fraud or commercial dispute.27 

A comparison among these contexts generally reveals significant conceptual convergence, with all cases 
exhibiting a clear transition from descriptive approaches to quantitatively validated systems for qualitative 
decision-making. The central principle that emerges is that every qualitative decision is, in essence, a 
statistical inference and must therefore be accompanied by explicit measures of performance, uncertainty, 
and reproducibility. This perspective establishes a new paradigm for analytical chemistry, in which qualitative 
methods are no longer merely screening tools but rather integral components of the metrological domain, 
characterized by traceability, comparability, and transparency.

The scope of the guide is broad, reflecting a modern approach to the determination of neurotransmitters. 
The determination and correct interpretation of the limits of detection (LoD) and quantification (LoQ) are 
essential aspects for ensuring the reliability and sensitivity of the proposed analytical method. In the 
study, achieving extremely low LoD and LoQ values demonstrates not only the system’s high instrumental 
performance but also its capability to detect and quantify analytes at trace levels, which is fundamental for 
biological and neurochemical applications.

Thus, defining LoD and LoQ within the context of this work not only confirms the procedure’s sensitivity but 
also reinforces the method’s metrological robustness and suitability for its analytical purpose, in accordance 
with internationally advocated principles of performance and uncertainty.28 

Finally, incorporating the recommendations from the guides promotes a culture of quality within laboratories: 
it does not blindly assume that a qualitative method is infallible. Instead, it acknowledges that it can and 
should be accompanied by reasonable estimates of reliability. This stance strengthens the credibility of 
results, supports analytical risk management, guides decisions on confirming or investigating borderline 
cases, and encourages continuous improvement of procedures, periodic method validation, and quality 
control strategies adapted to non-targeted analyses. 

In this way, selectivity ceases to be merely a technical property and becomes a performance metric with 
direct implications for uncertainty assessment and the reliability of analytical decisions. This consolidation 
elevates qualitative metrology to the status of a mature scientific discipline, indispensable for ensuring 
confidence in analytical decisions at both local and international levels.
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