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Before beginning this text, one point must be made very clear. Vaccination is essential for preventing 
serious diseases and avoiding outbreaks that threaten public health. Vaccines protect individuals and the 
community through herd immunity, reducing mortality, hospital costs, and permanent sequelae associated 
with infections. Vaccination is an act of caring for yourself and others. 

Thimerosal (TM) is a mercury-containing organic compound widely used as a preservative in various 
biological and pharmaceutical products, including many vaccines, to prevent the growth of harmful microbes 
inadvertently introduced into the vaccine during its use. The documented antimicrobial properties of TM 
contribute to the safe use of vaccines in multi-dose vials, which are less expensive, easier to store, and 
help reduce waste. TM, which is approximately 50% mercury by weight, has been one of the most widely 
used preservatives in vaccines. It is metabolized or degraded to ethylmercury (EtHg) and thiosalicylate. In 
general, a vaccine containing 0.01% (m/v) TM as a preservative contains 50 µg of TM per 0.5 mL dose, 
corresponding to approximately 25 µg of mercury per 0.5 mL dose.1 The use of TM as a preservative in 
multi-dose vaccines is controversial because this compound has been abolished in the United States and 
the European Union, either due to its replacement with other preservatives (free mercury) or the adoption of 
single-dose formulations. In Brazil, it is somewhat surprising that of the use of TM in cosmetics (topical use) 
has been suspended,2 partly related to allergic contact dermatitis, but its use in vaccines is still permitted. 
The World Health Organization (WHO) supports this decision, stating that “ethylmercury is present in 
thiomersal as a preservative in some vaccines and does not pose a health risk.”3 However, a growing body 
of scientific evidence has increasingly challenged this assertion.

Experimental models for assessing the toxicity of a given species are particularly decisive. Regardless of 
the model (simple or complex) tested with TM, evidence of this compound’s toxicity consistently emerges to 
varying degrees (Figure 1). TM has demonstrated the ability to form adducts with cysteine, glutathione, and 
especially with carrier proteins, binding to free thiol groups and thereby being transported throughout the 
body, reaching other proteins, enzymes, and organs.4 In this sense, the effect of TM on proteins has been 
associated with its ability to induce protein fibrillation,4,5 impair hemoglobin’s capacity to bind oxygen, and 
increase protein glycation.6 The use of electrospray ionization–mass spectrometry (ESI-MS) has confirmed 
TM’s high affinity for proteins containing free thiol groups, leading to metalation and the formation of stable 
adducts with cytochrome c, ribonuclease A, carbonic anhydrase I, and superoxide dismutase, thereby 
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compromising the natural activity of these enzymes.7 When used as a cellular model, erythrocytes exposed 
to TM show alterations in essential functions, particularly in oxygen transport capacity, along with changes in 
cellular morphology.8 Across different cellular models, TM has consistently demonstrated toxicity, indicating 
that the doses used to achieve antimicrobial activity cannot be considered safe.9

Different animal models (flies, fish, and rodents) have consistently demonstrated that TM is a toxic 
compound, even at sublethal doses.10–12 In mouse models, TM compromises vaccine potency through 
thiol modification, affecting the antigenicity and immunogenicity of the formulation by reducing the binding 
activity between antigens and antibodies.13 In contrast, a Wistar rat model mimicking TM exposure in infants 
following childhood vaccination revealed significant damage to bioenergetic pathways within the nervous 
system, particularly the brain.14 Moreover, in baby monkeys exposed to TM-containing vaccines, researchers 
found that the fraction of inorganic mercury in the brain ranges from 21% to 86% of total mercury measured, 
with an average of ≈ 70%.15 

Figure 1. The chemical structure of thimerosal and examples of different 
experimental models for toxicity assessment.

In vitro studies comparing EtHg with methyl mercury (MeHg) have shown similar outcomes in cardiovascular, 
neural, and immune cells. However, under in vivo conditions, evidence indicates distinct toxicokinetic 
profiles between MeHg and EtHg, with the latter exhibiting a shorter blood half-life, different compartment 
distribution, and faster elimination. EtHg’s toxicity profile, therefore, differs markedly from that of MeHg, 
leading to distinct patterns of exposure and associated toxicity risks.16 From another perspective, studies 
on the environmental fate and risk of mercury have mostly focused on total mercury and the toxic species 
MeHg. However, EtHg has long been overlooked, partly due to analytical limitations. The occurrence of 
EtHg and its possible natural sources in the environment provide essential background information and 
valuable clues for understanding its natural presence and environmental behavior.17 Thus, the distribution 
and toxicological aspects of EtHg are not solely associated with TM use; they are also related to other 
environmental and chemical pathways. Therefore, expanding research on TM and EtHg is a strategic priority 
to achieve a more comprehensive understanding of their biological effects and associated impacts.18
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In this context, the continued use of TM in some vaccines reflects less an unavoidable scientific necessity 
and more a set of regulatory, logistical, and economic barriers. The proven stability of these formulations, 
the low rate of serious adverse events, and the reduced cost of multidose vials create a scenario in which 
regulatory agencies are reluctant to require reformulations that would necessitate new stability, safety, and 
immunogenicity studies. From an industry perspective, the lack of economic incentives to modify products 
intended primarily for low-return markets reinforces institutional inertia, even in the face of technically feasible 
alternatives consistent with global efforts to reduce mercury use.

In this context, analytical chemistry plays a crucial role in providing evidence that extends beyond 
traditional safety indicators. Sensitive chemical speciation methods, for example, enable the distinction 
between EtHg, MeHg, and their inorganic forms, thereby revealing metabolic pathways that in the past could 
not be assessed with conventional toxicological approaches. These advances enable the characterization 
not only of the kinetics of systemic elimination, but also of the formation and accumulation of inorganic 
species in target tissues, providing a more accurate basis for reassessing risks in vulnerable subpopulations. 
In addition, microbiological monitoring techniques and chemical stability analyses provide robust data to 
validate formulations without TM or with alternative preservatives, demonstrating that microbiological safety 
can be preserved through optimized packaging systems or the adoption of single-dose presentations.

Based on this evidence, a central conclusion can be drawn: The maintenance of TM today is more a 
consequence of a regulatory and productive framework that is insufficiently dynamic than it is a result of 
real scientific limitations. The data generated by analytical chemistry, speciation studies, kinetic analyses, 
stability evaluations, and post-use surveillance not only allow for a more detailed characterization of the 
toxicological profile of EtHg, but also provide technical support for transitioning to safer and scientifically 
sound alternatives. Thus, analytical advances cease to function merely as evaluative tools and become 
true catalysts for change, providing the scientific basis required for regulators and manufacturers to adopt 
policies and formulations that progressively reduce dependence on mercury compounds in vaccines.

Finally, it is crucial to emphasize that, regardless of whether TM is present, vaccination remains essential. 
For adolescents and adults, TM-associated risks are typically minimal; however, for infants and newborns, 
existing uncertainties deserve more careful consideration. Nevertheless, the choice between a TM-containing 
vaccine and no vaccination at all is unequivocal: Vaccination unquestionably remains the safer and more 
responsible option.
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