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Graphical Abstract

    The chemical characterization by classical methods requires a 

long time of analysis and the use of expensive and environmentally 

aggressive reagents. The use of the partial least squares (PLS) tool

applied to FT-MIR data represents a reduction of these considered 

variables. The relative contributions of glucose, fructose, and 

sucrose obtained for the 26 cassava samples varied between 

0.111-0.383 g/100g; 0.0317-0.256 g/100g and 0.286-0.775 g/100g, 

respectively. For five latent variables the mean of predicted glucose 

content in external samples was 0.220 g/100g and had the RMSEP 

value of 0.00590 g/100g; The best number of LVs for the prediction 

of the fructose content for new samples were five, where the mean 

of the predicted value was 0.0994 g/100g against the mean fructose 

reference value 0.0879 g/100g, with a 0.0115 g/100g RMSEP; The 

mean sucrose content in the external samples was 0.451 g/100g, 

compared with the reference value 0.515 g/100g, with a RMSEP 

0.138 g/100g. The use of the PLS1 algorithm generated two good 

models with the second derivative in spectral data and one with the 

raw data in spectral data using four samples external to the 

prediction step.

The mid infrared spectrum 
shows a facile method to
quantify glucose, fructose 

and sucrose obtaining 
PLS models with 

considerable robustness.
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INTRODUCTION 

   Cassava root has great importance both in economic and nutritional aspects, since the genus has 

approximately 98 species, with Manihot esculenta being the most cultivated in tropical regions [1]. The 

consumption of cassava in Africa is great, and in Mozambique its marketing can reach more than 240 

million dollars. In other regions of the world, it is consumed by approximately 700 million people [2,3].

    The content of glycines in the cassava root is closely related to the starch content present because this 

plant structure is essentially starchy with low protein, lipid and ash contents.

    Other carbohydrates of different molecular weights may be present, from sugars to glycosides and 

cellulosic material. Therefore, the root is a fundamental raw material for obtaining sugars by hydrolysis 

process, which has been used in recent years by the sugar industry, mainly in enzymatic processes to 

obtain glucose and fructose syrups, used in the pharmaceutical and food industry [4].
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Prediction of Glucose, Fructose and Sucrose content in Cassava (Manihot esculenta Crantz) genotypes 

from Amazon using PLS models

  Sucrose levels in vitro culture influence diverse metabolic processes in cassava such as tissue 

differentiation and growth. The trend of studies involving sugars content in amylaceous sources is reflected

in the ethanol obtained from the hydrolysis of cassava starch from syrups.
    The improvement of instrumental methodologies with few uses of the high amount of chemicals is a 

good environmental alternative. Among these techniques, the Fourier transform medium infrared 

spectroscopy (FT-MIR) stands out because it is a simple, fast and inexpensive technique that has been 

used with chemometric tools such as Partial Least Squares Regression (PLS) to quantify some classic

parameters of local models.

  The medium infrared (MIR) region shows promise since foods are mainly composed of water, 

carbohydrates, proteins, lipids and other minor components such as vitamins and minerals, all of these 

compounds have the ability to absorb radiation.

    Thus, the quantification of the compounds is possible from the evaluation of the intensity and region 

characteristic of the absorption bands of the main functional groups present. If signals are intercepted, it 

is often possible to extract spectral data more efficiently using multivariate mathematical methods [5].

    Many authors report the importance of using chemometric tools coupled to infrared spectroscopy to 

evaluate some chemical properties of food, where PLS modeling has been the most widely used 

chemometric tool in recent years [6-15].

    The multivariate calibration models generated for a universe of samples allow the creation of a local 

model in which new samples with similar spectral characteristics can be inserted and the parameter is 

quickly determined. Thus, it is increasingly necessary to explore this procedure, as shown by some 

recently published studies [16,17].

    The present work aims to use data from a reference method for quantification of glucose, fructose, and 

sucrose to create PLS models by FT-MIR spectral data.

MATERIALS AND METHODS

Sample preparation

    A total of 30 cassava genotypes were planted in the municipality of Igarapé Açu, Pará state, Brazil 

(01°07'33"S and 47°37'27"W) in an active germplasm bank of an experimental area of the Brazilian 

Company of Agricultural Research (Embrapa). The 26 samples were used for the construction of 

calibration models and 4 samples were used as external samples for prediction.

   The general characteristics of the planting site are medium-textured yellow latosol, "Am" type in the 

Köppen classification, with high annual precipitation (over 2,350 mm). The average annual temperature is 

around 25 ºC and relative humidity around 85%.

   After one year of planting, the samples were harvested, taken with running water, packed in plastic 

bags and stored under refrigeration between -18 and -4 ºC. They were peeled and cut into plastic planks, 

forming disks with approximately 2 cm, and separated in triplicates. After cutting, samples were ground 

and transferred to 50 mL Falcon tubes previously decontaminated with 10% (v/v) HCl aqueous solution 

and taken to the freezer where they remained at -18 °C for 24 h.
   The frozen samples were then lyophilized for 96 h to ensure removal of as much water as possible. 

The lyophilized samples were then crushed in an agate mortar and transferred to 80 mL plastic vials 

previously decontaminated with 10% (v/v) HCl aqueous solution and stored in dissent at room temperature 

until further analysis.

Determination of glucose, fructose, and sucrose by Elisa method

    A mass of 0.2 g of fresh root was macerated and the sugars were extracted with 80% (v/v) of ethanol. 

An aliquot of 5 μL of ethanolic extract and 5 μL of hexokinase, phosphoglucoisomerase and β-fructosidase 

enzymes were used to determine the different sugars. Absorbance reading was performed on an ELISA 

plate reader (Thermo Scientific Multiskan® FC Microplate Photometer) using a wavelength of 340 nm [18].
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FT-MIR analysis

    Analysis by medium infrared spectroscopy was performed by the ATR method. Samples were used in

triplicates using 1 mg of each lyophilized sample.

    The background of each sample was obtained by the environment spectral record. The samples were 

analyzed on infrared spectrometer as Fourier transform (Thermo Fisher Scientific Inc., model Nicolet) with 
-1a spectral range between 4000 and 500 cm . The instrumental analysis parameters were: spectral 

-1
resolution 4 cm , 32 scans per spectrum, correcting the bands of water and carbon dioxide.

Multivariate analysis

    The PLS models were created from FT-MIR data, which were processed by the software Unscrambler 

9.1© (CAMO Software AS). The spectral data were converted to the matrix form using mean absorbance 
-1

values obtained in 600-1450, 2900-3000 and 3300 cm .

  The validation method adopted was cross-validation of the complete segment of a sample. The 

elimination of anomalous samples was done according to the leverage values and the residual variance 

of matrix Y, in addition to the automatic detection by the program.

   The data of the matrices X and Y were not weighted, initially being constructed models for 10 PCs 

(principal components), observing the precision of each model with the elimination of abnormal samples 

and PC reduction.
    The data from both matrices were centered on the mean, the models were constructed by performing

pre-processing of the spectral data to verify the optimization of the spectral responses in the determination 

of each parameter, obtaining a total of 9 models constructed for each parameter. The spectral 

preprocesses used to construct the models were: raw data, normalized data, normalized first derivative 

data, normalized second derivative data, first derivative MSC, second derivative MSC, MSC with 

normalization, first derivative and second derivative.
    For the prediction step the spectra of 4 external cassava samples, in the same wavenumbers of 

calibration samples were used, using the average content of each parameter as a reference value.

RESULTS AND DISCUSSION

Sugars contents by ELISA analysis

    The analytical parameters of validation to Elisa analysis are shown in Table I.

Table I. Validation parameters for sugars quantification

Parameter Glucose Fructose Sucrose

LOD ( g/100 g) 0.0105 0.0120 0.0160

LOQ ( g/100 g) 0.0315 0.0300 0.0480

Recovery  (%)  120  115  105  
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Samples ID Glucose (g/100g) Fructose (g/100g) Sucrose (g/100g) 

IJ 0.258 ± 0,0712 0.103 ± 0.00230 0.775 ± 0.124 

CH 0.201 ± 0.0320 0.0507 ± 0.00193 0.382 ± 0.00291 

OV 0.185 ± 0.0173 0.0391 ± 0.00278 0.464 ± 0.0545 

MA 0.173 ± 0.0477 0.0521 ± 0.0364 0.616 ± 0.0309 

CP1 0.288 ± 0.114 0.0375 ± 0.0165 0.502 ± 0.001 

DI 0.282 ± 0.0808 0.182 ± 0.0514 0.428 ± 0.0557 

CP2 0.217 ± 0.0721 0.489 ± 0.0182 

CP3 0.297 ± 0.0703 0.439 ± 0.0616 

MN 0.236 ± 0.0302 0.508 ± 0.0889 

TM 0.216 ± 0.0875 0.479 ± 0.0406 

OP 0.347 ± 0.156 0.337 ± 0.00551 

JA 0.227 ± 0.0596 0.394 ± 0.0754 

JB 0.383 ± 0.125 0.471 ± 0.0457 

T1 0.244 ± 0.0766 0.736 ± 0.0137 

T2 0.324 ± 0.0748 0.616 ± 0.0125 

AM 0.343 ± 0.0640 0.529 ± 0.0234 

AT 0.189 ± 0.0436 0.759 ± 0.0267 

AMR 0.164 ± 0.0708 0.624 ± 0.0772 

P24 0.190 ± 0.0496 0.637 ± 0.0469 

BMG 0.124 ± 0.00497 0.387 ± 0.00254 

SB 0.115 ± 0.0342 0.303 ± 0.0209 

SAP 0.166 ± 0.0172 0.452 ± 0.0963 

CE 0.0966 ± 0.0304 0.286 ± 0.0136 

PV 0.194 ± 0.0234 0.767 ± 0.00887 

PE 0.111 ± 0.0132 0.610 ± 0.0704 

CPATU 0.172 ± 0.0127 

0.0881 ± 0.0093 

0.0751 ± 0.00096 9

0.0704 ± 0.0063 0 
0.0356 ± 0.0037 5

0.196 ± 0.071 7 

0.0826 ± 0.093 1 

0.104 ± 0.0032 7 

0.0697 ± 0.0075 1 

0.141 ± 0.031 7 

0.256 ± 0.043 5 

0.0697 ± 0.0049 7 

0.0591 ± 0.0033 9 

0.0612 ± 0.0056 9 

0.0911 ± 0.0016 9 

0.0567 ± 0.016 8 

0.122 ± 0.0077 5 

0.0317 ± 0.0057 5 

0.0779 ± 0.0030 3 

0.0662 ± 0.012 6 

0.0411 ± 0.0032 7 0.473 ± 0.0203 

Table II. Contents of sugars in cassava samples

The glucose, fructose and sucrose contents obtained by Elisa analysis are shown in Table II.

FT-MIR and multivariate calibration results

A total of 26 spectra were generated for each sample in triplicate (N=3), after this, the mean of spectra is

calculated. The spectrum of the 26 samples is shown in Figure 1.
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Figure 1. Mean FT-MIR spectrum of each sample.

    The spectral data shown in Figure 1 allows extracting the main region responsible to inform carbohydrate 

fingerprints to generate models based on nine pre-treatments. The regions that were extracted varied from 
-1 -11000 to 1400 cm , which includes the fingerprint region (900-1200 cm ), useful in the analysis of 

-1
carbohydrates [19]. In addition to the region from 3229.61 to 3301.53 cm , which contains more relevant 

information about the OH group from the hydrocarbon chains.

    The correlation coefficient in the calibration step reached the ideal value (≈ 1.0) with a lower number of 

PCs. Table III shows the diagnostic parameters of the calibration and validation steps for the glucose 

prediction model.

Table III. Calibration and validation parameters for each glucose model

a bModels submitted to Marten's uncertainty test; Number of PCs.

    According to Table II, the calibration models with the best diagnostic parameters were those with MSC/

Normalization and second derivative, so the next step was to verify the predictive power of the glucose 

content of each one for the external samples.
   Figure 2 shows the prediction of the model with an only second derivative of the spectral data, 

proving that this better predicts the glucose content in new samples compared to the average of glucose

level.

Figure 2. Prediction of glucose content.

Vasconcelos, A. A.; Cunha, R. L.; Cunha, E. F. M.; Campos, W. E. O.; Taube, P. S.; Dantas Filho, H. A.

Model RMSEC Y- explained variance/% r2 RMSECV

0.0513 (3 b) 56.00 (3) 0.7483 (3) 0.0608 (2)

0.0359 (6) 69.57 (6) 0.8341 (6) 0.0509 (2)

0.0156 (6)  95.89 (6) 0.9792 (6) 0.0888 (2)

0.0065 (6) 98.98 (6) 0.9949 (6) 0.0830 (2)

0.0167 (6) 94.74 (6) 0.9733 (6) 0.0822 (3)

0.0226 (6) 90.90 (6) 0.9534 (6) 0.0895 (1)

0.0086 (6) 98.02 (6) 0.9900 (6) 0.0459 (8)

0.0229 (6) 89.83 (6) 0.9478 (6) 0.0933 (4)

Crude dataa

MSC/1st Derivativea 

MSC/2nd Derivative 

MSC/Normalization 

Normalization/1st Derivative 

Normalization/2nd Derivative 

Normalization 

1st Derivative 

2nd Derivative 0.0078 (6) 98.86 (6) 0.9943 (6) 0.0926 (3)

33



Article

Prediction of Glucose, Fructose and Sucrose content in Cassava (Manihot esculenta Crantz) genotypes 

from Amazon using PLS models

    For four latent variables, the predicted mean glucose content had the RMSEP value of 0.0059 g/100g 

(second derivative) versus 1.9266 g/100g (MSC/normalization) for the same number of latent variables. 

The mean value predicted for glucose was 0.220 g/100g versus the mean value of 0.226 g/100g 

determined by Elisa method.

    For six latent variables, the second derivative model had RMSEP and SEP equal to 0.0063 g/100g and 

0.0011 g/100g respectively, while the other model had RMSEP and SEP equal to 2.1686 g/100g and 

0.2079 g/100g respectively. The high SEP value indicated that although the calibration set was adequate, 

the model has probably high residues as the result of pre-processing of the spectral data.
    Authors evaluating cassava biomass parameters by PLS-DA regression found higher prediction errors 

for 4 latent variables in the prediction of ash, potassium and chlorine contents [20]. The errors had a factor

of 10 relative to the errors found, showing the robustness of the obtained model. Other authors report the 

use of PLS to Lotus seed infrared data, generating models with a maximum of 4 latent variables for 

parameter prediction, however, the authors performed few pre-treatments [21].

  Some authors obtained differences in glucose prediction parameters by the differential use of 

accessories in the spectrometer. Reporting SEP value between 0.46 and 0.38 mg/g for the use of ATR 

mode and dial-path respectively [22]. Thus, not only logical data processing is fundamental in a PLS 

analysis, but the proper use of accessories in the equipment as well.

Table IV shows the performance parameters of the models created for the prediction of fructose content.

anumber of PCs

    The best models obtained with better parameters of calibration and validation were second derivative, 
st ndMSC/Normalization, Normalization/1  Derivative and Normalization / 2  Derivative. The models that had 

the best RMSECV value with 1 principal component were inadequate, due to the increase of error.
    Among the best models, the one with the second derivative was the most robust, because the validation 

error reached the lowest value with only 2 LVs in comparison to the others. To prove that this model was 

able to predict better than the other three that are shown in Table V.

Table V. RMSEP values to predict fructose contents in external samples
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    The RMSEP values clearly show the good ability of the second derivative model to predict fructose 

levels in new samples with the decrease of the error associated. The model was the only one that had a 

good decrease of prediction error with the increase of latent variables. The best number of LVs for the 

prediction of the fructose content for new samples were four, where the mean of the predicted value is 

0.0994 g/100g versus the average of the reference 0.0879 g/100g. Figure 3 shows the prediction of 

fructose in external samples.

Figure 3. Prediction of fructose content.

    Authors performed the coupling of Raman spectra obtained from prebiotic sugars with PLS analysis, 

obtaining weak correlations of the calibration and validation stages of the models, respectively, in the 

values of 0.989 and 0.984 [19]. Contrasting the best model obtained for fructose in which correlation 

assumed the value of 0.9941.

   In the determination of functional compounds in baby food, authors report the creation of prediction 

models using NIRS data. These models presented high values of prediction error even after performing 
st

spectral pre-treatments, the 1  derivative, SNV and centering in the mean [23]. These results confirm the 

robustness of the model for prediction of fructose in relation to the most recent published works.

    Table VI shows the calibration and validation parameters for each ideal model considered for sucrose 

prediction.

Table VI. Calibration and validation parameters for each sucrose model

a bModels submitted to Marten's uncertainty test; Number of PCs

    The elucidation of the predictive capacity of the models is shown in Table VII, considering only three 

latent variables.

Table VII. RMSEP values to predict sucrose contents in external samples

Vasconcelos, A. A.; Cunha, R. L.; Cunha, E. F. M.; Campos, W. E. O.; Taube, P. S.; Dantas Filho, H. A.
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    These prediction error values have shown that the crude data model has the minimum RMSEP value 

for only two LVs, this error value being smaller than others. This model was the only one that had the 

decrease of prediction error with the increase of latent variables. The elimination of some wavenumbers 

improved the model, predicting a mean sucrose content in external samples of 0.4510 g/100g, compared 

with the reference value 0.5150 g/100g. Figure 4 shows the prediction in the external samples for this 

model.

Figure 4. Prediction of sucrose content.

    Experiments involving chemical characterization of cassava with FT-MIR and construction of prediction 

models with PLS are not mentioned in the literature. Some authors use PLS together with infrared 

spectroscopy data to predict physicochemical properties. These authors had figures of merit and number 

of latent variables higher compared to models obtained using medium infrared spectroscopy and Raman 

spectroscopy [24,25].

    In spite of this, some authors report that FT-MIR spectroscopy is a technique with great advantage in 

showing a spectrum directly related to chemical information, as it was observed in the case of glucose, 

fructose and sucrose which have been quantified in many agricultural matrices by many methods among 

which infrared spectroscopy has been highlighted [26,13].
    Some authors have used FT-MIR spectroscopy coupled to PLS regression to quantify many properties, 

generating models with RMSEP in the range of 4.3000-5.9000 g/100g to quantify phenolic compounds in 

red grape [27,28].

    The use of this coupling was reported involving Raman spectroscopy, showing a great possibility of 

applying the PLS regression with spectroscopy techniques [29]. In the determination of phenolic 

compounds in wine, some authors have found prediction error values ranging from 0.99 to 3.24 g/100g. 

The use of the PLS1 algorithm is also reported as more advantageous in the creation of models for the

prediction of sucrose, presenting RMSEP reduction of 13.6 to 10.0 g/L in the prediction of the reference

average content in direct determination of fructooligosaccharides treated by β-fructofuranosidases 

enzymes [30].

CONCLUSIONS

    The pre-processing of spectral data was used to stabilize the constructed models. At this point, the 

second derivative was the best pre-processing for the prediction of glucose and fructose and the crude 

data explained better sucrose contents. 
    This work has shown that it is possible to do less use of classical analysis techniques in the repeatability 

of the determination of essential compounds in food matrices, from the creation of local models of 

multivariate regression by partial least squares. It is always important to expand the sampling to create 

ideal models of the studied properties, a factor that must be taken into account by future work.

Manuscript received Jan. 26, 2018; revised manuscript received April 23, 2018; accepted May 2, 2018.
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